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Abstract

The two-dimensional kagome lattice has been shown to be a promising
basis for active shape-changing structures, having both low actuation re-
sistance and high passive stiffness. Activation of some members results in
a global macroscopic shape change. Small deformation models show that
the kagome lattice’s properties are critically dependent on its initial geom-
etry. This paper investigates the fundamental actuation properties of a
kagome lattice subject to single-member actuation, particularly when geo-
metric non-linearity is introduced with large actuation strains. Actuation
resistance is found to be lowered with expansive actuation; a limiting peak
actuation stiffness is observed when the actuator is flexible. Conversely,
actuation resistance is found to increase with contractile actuation.

1 Introduction

Recent studies have shown the two-dimensional kagome lattice, shown in Fig-
ure 1, to be a prime candidate to form the backbone of active structures (dos
Santos e Lucato et al., 2004; Hutchinson et al., 2003; Symons et al., 2005a,b).
If linear actuators replace some members of the truss, significant global macro-
scopic shape changes can be achieved with a relatively small number of actua-
tors. In order to obtain a deeper understanding of the response of the kagome
lattice to actuation, this paper investigates a simple case, where an infinite
kagome lattice is activated by a single actuator.

Active structures, also known as adaptive or smart structures, change their
configuration, shape or other properties to better carry the type and magnitude
of its design loads. Shape changes in active structures are achieved by actuation
of some parts of the structure. To date, actuators manufactured are predomi-
nantly one-dimensional, where their capabilities are confined to extending and
contracting along or rotating about one axis; active truss structures provide a
way of incorporating linear actuators into a structure. The paper will focus on
the structural response of the truss rather than methods of actuation – possible
actuators are described in dos Santos e Lucato et al. (2004) and Symons et al.
(2005a,b).

Hutchinson et al. (2003) has shown that the planar kagome lattice can be
actuated with minimal internal resistance while maintaining overall stiffness.
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Figure 1: Part of an infinite kagome lattice, with the thick line at the centre
representing a single actuator.

The rigid-jointed planar kagome lattice exhibits high passive stiffness, while
having a low actuation resistance. These properties are ‘inherited’ from the pin-
jointed ‘parent’ (Deshpande et al., 2001) where the kagome truss is composed
of rigid triangulated unit-cells, with mechanisms allowing relative motion of the
cells; as member stockiness, s, is reduced, the properties of the rigid-jointed
structure approaches the properties of the pin-jointed structure. The stockiness
is a non-dimensional measure of the aspect ratio of each member, defined as
s = k/L, where k is the in-plane radius of gyration of each member and L is the
length of the member (s is the reciprocal of the common mechanics parameter
slenderness).

Wicks & Guest (2004) have shown, using various linear finite element and
analytic models, that the exceptional behaviour of the kagome lattice depends
on both flexure of members, and axial contraction of the bars co-linear with
the actuator. However, this behaviour depends crucially on the geometry of the
lattice, and hence kagome lattices subjected to large actuation will be prone to
geometrically non-linear effects.

This paper investigates geometric non-linearity in the single-bar actuation
behaviour of kagome lattices with stockiness ranging from 0.001 to 0.05 (an areal
density of ' 0.3% → 15%), covering the likely range of practical interest, with
actuation strains of up to ±50%. The two experimental active kagome lattice
structures described in the literature have s = 0.007 (dos Santos e Lucato et al.,
2004) and s ' 0.0085 (Symons et al., 2005a,b).

The paper is structured as follows. Section 2 will describe the computational
model used in the finite element analyses. Section 3 will describe the deformed
mode shapes of the lattice following actuation, and section 4 will investigate
the build-up of force in the actuator. Section 5 explores the actuation limit due
to material yield and member buckling. Section 6 provides a discussion of the
results.

2 Computational model

The planar kagome lattice is a class of repetitive truss structure. Noor (1998)
reviewed analysis methods for repetitive trusses and described the following four
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Figure 2: The spring boundary condition; boundary nodes of the kagome lattice
are connected to spring elements to simulate the response of an infinite grid.

classes of approach, with increasing computational expense:

1. The substitute continuum approach which the truss considered is replaced
by a continuum with resembling structural properties (Timoshenko &
Gere, 1961).

2. The periodic structure approach, which employs a transfer matrix relating
a state vector on the boundaries of the unit cell (Noor & Zhang, 2006).

3. The direct field method, which uses finite difference equations on unit
cells (Dean, 1976; Renton, 1984).

4. The direct or finite element method, which discretizes the entire struc-
ture (Akin, 1986).

or a combination of the above (Karpov et al., 2002). This paper uses the finite
element method as the basis of its analyses. Computational time has been
substantially reduced by the use of symmetry and an elastic boundary conditions
to mimic infinity, making the entire array of result from FEM feasible.

The finite element package ABAQUS (ABAQUS, 2003) was used to model
the structure in two and three dimensions. The model used was designed to
represent an infinite lattice: to do this a finite rectangular lattice, with a width
80 times the individual member length L, and a height of 30 × L

√
3/2 ≈ 26L,

was used together with a spring boundary condition, as shown in Figure 2. The
derivation of the required spring stiffness to represent the rest of an infinite
lattice is given in Appendix A by assuming linearity, and decoupling between
different boundary points; the required stiffness turns out to be proportional to
the stockiness, s. Computational effort is reduced by the assumption that the
response is symmetric about the central vertical line.

Two extreme cases are considered for the stiffness of the actuator: either
that the actuator has the same elastic properties as every other bar, which we
refer to as the ‘flexible’ actuator; or the actuator is a pin-jointed infinitely stiff
bar that imposes a fixed distance between its ends, which we refer to as the ‘stiff’
actuator. Apart from the actuator, all other bars in the lattice have identical
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properties. The actuator is either axially elongated, defined here as positive
actuation, or contracted, defined here as negative actuation. Flexible actuation
is achieved by raising or lowering the overall temperature in the system and
using an actuator that has a coefficient of thermal expansion of unity, while
the rest of the structure has a coefficient of thermal expansion of zero. Stiff
actuation is achieved by increasing or decreasing the distance between the two
ends of the actuator.

Each bar of the lattice except the actuator is modelled with four 3-noded
Timoshenko (shear flexible) beam elements; the flexible actuator is modelled
with eight such elements, while the rigid actuator is modelled by imposing a
relative displacement. Test cases showed that using a higher number of elements
per bar gave results that were indistinguishable from those reported here. No
consideration is given to the actual size of a joint between bars, which is assumed
to be at a point. For most analyses, each bar has a circular cross-section of
radius r. The material properties are assumed to remain linear, with a Young’s
modulus E, giving an axial stiffness AE, where A = πr2, and flexural stiffness
EI, where I = Ak2 = Ar2/4; k = r/2 for a round bar. Bars with rectangular
cross-sections are used for out-of-plane buckling analyses, with area A = bd,
where b and d are out-of-plane and in-plane dimensions respectively. Similarly,
this gives axial and in-plane flexural stiffness AE and EI = EAk2, but with
k = d/2

√
3.

Lattices were considered with stockiness s ranging from 0.001 to 0.05, which
covers the range likely to be of interest for application. We describe the actua-
tion in terms of an actuation strain, εa: we define this strain to be the extension
the bar would experience if unconstrained, divided by its original length; it is
defined as being positive when the bar gets longer. The actual strain experi-
enced in the flexible actuator, ε, is smaller than the actuation strain, as the rest
of the structure imposes an axial force F to the actuator, which this gives rise
to an elastic strain of opposite sign to εa. With a stiff actuator, the actuation
strain equals the elastic strain: ε = εa.

3 Mode of deformation

This section will separately present the shape of the deformed lattice following
expansive and contractile actuations. In each case, the geometrically non-linear
results for both the stiff and flexible actuator are compared with the results of
a linear model. The comparisons are done for an actuation strain of ±50%,
and for three different values of stockiness. It is assumed that the grid has no
imperfection, and only in-plane deformation are considered – Section 5.3 will
revisit these assumptions.

The mode of deformation for a linear calculation was characterized by Wicks
& Guest (2004) – essentially identical results are presented here for the linear
case. The key features of the linear deformation mode can be observed in the
results shown in Figures 3(b) and 4(b). Deformation is confined largely to a cor-
ridor parallel with the actuator. The deformation dies away in an approximately
exponential manner, and the rate of decay is proportional to the stockiness, s.
The linear results provide a useful base to compare the geometrically non-linear
results in Figures 3(a,c) and 4(a,c).
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Figure 3: Deformed kagome lattices under positive actuation for εa = 0.5 and
different values of bar stockiness: (a) non-linear actuation with a flexible actu-
ator, (b) linear calculation and (c) non-linear actuation with a stiff actuator.
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Figure 4: Deformed kagome lattices under negative actuation for εa = −0.5
and different values of bar stockiness: (a) non-linear actuation with a flexible
actuator, (b) linear calculation and (c) non-linear actuation with a stiff actuator.
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3.1 Non-linear actuation – expansion

A key feature of the linear response is that lengthening of the actuator can only
be achieved by shortening the other members in line with the actuators, leading
to the interesting combined bending and stretching responses observed in Wicks
& Guest (2004), with an exponential decay in deformation with distance from
the actuator. However, once the initial straight lines of bars has been bent by
actuation, further shortening can occur by bending alone.

The deformed shape of the lattice calculated using the geometrically non-
linear model, for εa = 50%, is shown in Figure 3(a) for the flexible actuator,
and Figure 3(c) for the stiff actuator. Both sets of results show increased lo-
calisation of the deformation when compared with the linear calculation shown
in Figure 3(b), and this increased localisation is greater for smaller stockiness
s (but note that the linear results themselves show less localisation as s is de-
creased). The key observation, however, is that for the flexible actuator, the
deformation is almost entirely localised in the actuator itself.

3.2 Non-linear actuation – contraction

As for expansion, in the linear regime, the shortening of the actuator can only be
achieved by lengthening of the other members in line with the actuator. How-
ever, unlike during actuator expansion, bending of these bars due to actuation
does not then make deformation of other members in line with the actuator any
easier.

The deformed shape of the lattice calculated using the geometrically non-
linear model, for εa = −50%, is shown in Figure 4(a) for the flexible actuator,
and Figure 4(c) for the stiff actuator. The linear calculation results shown
in Figure 4(b) are identical to the expansion case but with a sign change for
deformation.

Both sets of geometrically non-linear results show decreasing localisation as
stockiness is reduced. In the linear case, deformation is primarily confined within
the corridor of bars co-linear to the actuated member; but in the geometrically
non-linear cases the deformation spreads to neighbouring corridors. Unlike the
expansion case, the results appear almost identical for the stiff and flexible
actuators.

4 Actuation forces

This section will describe the force, F (defined as compression positive), devel-
oped in the actuator as it is activated. For small deformations, when the bar is
approximately straight, F is nearly constant along the length of the actuated
bar; for larger deformations we define F to be an average of the varying force
along the bar.

A non-dimensional form of the force can be defined by comparing the force
with that required to stretch a bar: this formulation was implicit in Wicks &
Guest (2004) and explicit in Leung et al. (2004). For consistency, we will retain
this formulation, and define

F̂ =
F

EA
(1)

where EA is the axial stiffness of the actuator.
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Figure 5 shows a plot of actuation force against actuation strain for three
values of stockiness, for both the stiff and flexible actuator. In all cases, the
plots show a softening response to expansion of the actuator (+ve εa), and a
stiffening response to contraction (−ve εa). For expansion of the actuator the
results for the flexible actuator clearly show greater softening. In fact, in all
three plots the actuation force F̂ reaches a peak, but this can only be clearly
seen in Figure 5 for s = 0.05, where F̂ reaches a peak at εa = 40%. For the stiff
actuator, F̂ does not reach a peak.

The results in Figure 5 are difficult to compare because of the large dif-
ferences in magnitude of the results. However, an alternative non-dimensional
plot allows better comparison. Consider comparing F with the force required
to bend a bar in the lattice. For any bending deformation, the force applied for
a displacement δ will be given by (cEAk2/l2)× (δ/l), where c is a constant de-
pending on the support condition. Thus the appropriate non-dimensional form
of F is

F

EAk2/l2
=

F

EAs2
=

F̂

s2
(2)

and it is this form that we shall use for an alternative plotting of the results.
The values of F̂ /s2 during actuation are shown in Figure 6, for the flexible

actuator only. Note that the abscissa used here is εa/s – effectively measuring
actuation displacements relative to the thickness, rather than the length, of the
the bar. It was found in Wicks & Guest (2004) that, for a kagome lattice,
the non-dimensional energy of actuation, or equivalently the non-dimensional
actuation stiffness, dF̂/dεa for small εa, was proportional to s (Leung et al.,
2004). Hence the choice of abscissa, εa/s, and the choice of ordinate, F̂ /s2,
ensures that the slope of the lines for εa = 0 is approximately equal for all s.
These features can be seen in Figure 6. Note that in Figure 6, the maxima in
F̂ for s = 0.001 and s = 0.007 now occur outside the range of data plotted.
Results for the stiff actuator in this range are rather similar (apart from the
absence of the peak for s = 0.05) and are not shown for clarity.

5 Actuation limit

We consider two limiting cases for actuation. The first is when actuation is lim-
ited by the material properties of the lattice material: we consider the structure
ineffective when a yielding strain is reached somewhere in the lattice. An alter-
native limit is when the actuator is not able to apply an increased force to the
deform the rest of the lattice – either due to a classical buckling phenomenon,
or because deformation has localised within the actuator.

5.1 Strain limited actuation

We consider limitation on the actuation of a structure that yielding anywhere
in the structure outside of the actuator must be avoided. This section reports
numerical results for the peak achievable actuation strain in infinite kagome
lattices.
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Figure 5: Non-dimensional actuation force calculated using geometrically non-
linear models, for both flexible and stiff actuators, and s = 0.001, s = 0.007 and
s = 0.05.
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5.1.1 Flexible actuator

Figure 7 shows the magnitude of actuation strain, εa, at which first yield occurs
plotted against stockiness, s, for a flexible actuator. Various values of material
yield strain, εy, for both positive and negative actuation are included, covering a
practical range of yield strains from material such as mild steel (εy ≈ 0.125%) to
titanium (εy ≈ 2.0%). In each case, the yield strain is reached at some position
in the bar immediately adjacent to the actuator, as shown in Figure 9(a). The
position of first yield varies with the stockiness of the lattice.

The results are shown only up to εa = 0.5 and are truncated by the line of
peak actuation force, marked by crosses in Figure 7. Peak force achieved in a
flexible actuator indicates a limit on the practicality of the kagome lattice as an
active structure. Peak force occurs at an actuation strain proportional to the
stockiness of the lattice: the results are also plotted in Figure 10 and discussed
in Section 5.2.

The result from Figure 7 shows for smaller stockiness and higher yield strains,
geometric non-linearity affects maximum actuation strain most severely. For
the smallest yield strain case εy = 0.125%, it is observed that when stockiness
decreases in the positive actuation case, peak actuation is suddenly lowered
from the gradually increasing trend. The same effect is observed for other εy.
In the negative actuation cases, no sudden drop in achievable actuation strain
is observed.

5.1.2 Stiff actuator

Figure 8 shows the magnitude of actuation strain, εa, at which first yield occurs
plotted against stockiness, s, for a stiff actuator. Three material yield strains,
εy, from 0.125% to 2.0% are included, for both positive and negative actuation.
In each case, the yield strain is reached at some position in the bar immediately
adjacent the actuator, as shown in Figure 9(b). The position of first yield varies
with the stockiness of the lattice.

5.2 Peak actuation force and buckling

In Figure 7, the straight line marked by crosses shows the actuation strain at
which peak actuation force in the actuator is achieved. This peaking effect can
be seen in Figure 5 for s = 0.05: the solid line representing flexible positive
actuation peaks at approximately εa = 0.4. This critical actuation strain exists
for each of the models with a flexible actuator, and its value increases approx-
imately linearly with the stockiness of the lattice. These data is also shown in
Figure 10. When actuation force ceases to increase with actuation strain, the
maximum activation capability of the lattice is reached. This phenomenon is
only observed in the positive flexible actuation case, and we consider it as a
limiting case of actuation of the kagome lattice.

One way to predict the peak actuation force would be to consider a bifur-
cation analysis based on a linear model. However, for this case, this is not
found to give good results, as is shown in Figure 10: the structure undergoes
large deformations before the peak force is obtained, and this renders a pre-
diction based on a linear model inaccurate. Another possible failure mode is
out-of-plane buckling, which is investigated in the following section.
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Figure 9: The position of the peak strain in the kagome lattice due to the
actuation of a single bar, indicated by arrows, with a (a) flexible, and (b) stiff
actuation.

5.3 Buckling of an imperfect structure

The results described thus far are for a perfect planar structure. For most
practical uses of a kagome lattice, deformation out of plane is likely to be re-
strained (dos Santos e Lucato et al., 2004; Symons et al., 2005a,b). However,
we do here consider the possible out-of-plane buckling by considering a full
three-dimensional structure with imperfections. This has the useful side-effect
of showing that the imperfections barely affect the in-plane response.

Random imperfection has been implemented into the system to invoke any
possible buckling modes. The magnitude of imperfection, δ, in a particular
direction, is a function of radius of gyration, and is defined as

δx, δy, δz = P ∗R ∗ 2k (3)

where P is the imperfection factor: values of 0.01%, 0.1% and 1.0% were used. R
is a normally distributed random number between 0 and±1.0; and k is the radius
of gyration of the model. These imperfections are applied on all the member
nodes of a kagome lattice model, except the actuator. Results show that no in-
plane buckling response occurs. The in-plane response is indistinguishable from
the ‘perfect’ results described in Section 4. Thus the following will focus on the
effect of out-of-plane imperfections, δz, on the out-of-plane buckling response.

The response of the imperfect structure to actuation is plotted in Figure 11
for models with circular bars of s = 0.01 and flexible actuator, together with
results for the perfect structure for comparison. The response of the imperfect
structure initially matches that of the perfect structure, but at some point,
depending on the imperfection factor , P , there is a sudden drop in the actuator
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Figure 10: Comparison of limiting actuation strain at peak actuation force and
buckling load.

load, and the structure deforms into a plate buckling like deformed mode. If
the actuation is reversed for a buckled structure, the structure follows this post-
buckling path, and does not return to the initial curve until the actuation reaches
zero.

For cases when there is no out-of-plane restraint, the out-of-plane buckling
can still be suppressed by increasing the out-of-plane bending stiffness of the
bars. Models with rectangular cross-section bars have been analyzed, with con-
stant imperfection factor and a flexible actuator. To maintain a constant s, the
in-plane dimension, d, of the members must remain constant, while the out-of-
plane dimension, b, is altered. Figure 12 shows results from changing b, while
keeping, d, s and the imperfection factor constant; b ranges from 0.5d to 4d.
By increasing one dimension of the bar cross-section, the actuation response
approaches that of the perfect model.

The above results have all been for a flexible actuator — essentially similar
results were obtained for a stiff actuator.

6 Discussion

It is found that positive actuation causes a decrease in actuation stiffness. This
effect is especially prominent at small stockiness because of the smaller member
bending stiffness. For flexible actuators only, F̂ reaches a peak value.

Negative actuation results in an increased actuation stiffness, for both flex-
ible and stiff actuation, indicating a stiffening response. This is due to a more
stretching dominated response invoked by a contracting actuator.

The mode of deformation can provide explanation for the softening and stiff-

12



0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

εa

F

P
=

0
.0

1
%

P
=

1
.0

%

P
=

0
.1

%

Perfect

Post-buckling

alternative path

Figure 11: Actuation force versus actuation strain for kagome lattice models
of s = 0.01 with a flexible actuator and circular bars. Results are shown for
three imperfection factors, P . The dashed line indicates reverse loading. The
‘perfect’ result from 2D modeling is included for comparison.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

εa

F

Perfect

b=0.5d

b=d

b=2d

b=4d

Figure 12: Actuation force versus actuation strain for kagome lattice models of
s = 0.01 with a flexible actuator and rectangular bars. The in-plane dimension
d is kept constant, and the out-of-plane dimension b varies. The ‘perfect’ result
is included for comparison.

13



ening effects under single-member actuation. The softening response observed
with positive flexible actuation is caused by localised deformation within the
actuator itself. Figure 3(a) shows severe bending deformation in the flexible
actuator when stockiness is low. It shows that deflection attenuation is excep-
tionally rapid for the smallest stockiness s = 0.001, where almost all deformation
is found within the actuator and the co-linear bars immediately adjacent. For
positive stiff actuation, Figure 3(b) shows a similar response where local defor-
mation is concentrated near the actuator. As these bars deform quickly and
locally with increasing actuation, less effective actuation can be transmitted to
the rest of the structure.

Negative actuation causes deflection to propagate in a direction perpendic-
ular to the actuator, especially when stockiness is small. In Figure 4(b), where
actuation is small and linear, deflection is largely confined within the actuator’s
corridor. With large actuation, Figures 4(a) and (c) shows that more diagonal
bars are affected, and this contributes to the stiffening effect observed.

Figure 5 shows the discrepancies between flexible and stiff actuation models
of the same stockiness. The sudden decrease in stiffness observed in flexible
actuation models are not observed in the stiff actuation models. This shows
that the peak in actuation force, described in the above discussion, is the result
of the properties of the actuator deforming in bending. Kagome lattices can be
made more effective for positive actuation if the actuator is stiffer.

Finally, actuation is limited only by material strength and the limitation on
actuation force. In-plane buckling proves not to be an important consideration.
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Appendix

A Spring boundary stiffness derivation

The springs at the boundary of the modelled lattice should represent an infinite
continuation of the kagome lattice. As long as the modelled lattice is large
enough, the deformations at the boundary will be small, and hence the result
of a linear model gives an appropriate boundary spring stiffness.

elastic medium

horizontal bar,

semi-infinite
f 

,
x position, x

displacement,

u(x)

Figure 13: Smeared stiffness model, where a bar is suspended in an elastic
material; adapted from Wicks & Guest (2004).

Here, we adapt the smeared stiffness model shown in Figure 13 from Wicks
& Guest (2004) to find the boundary stiffness. Now the force f ′x represents the
force at the edge of the modelled lattice. Wicks & Guest (2004) show that

u(x) = u0e
−cx (4)

where u(x) is the horizontal nodal displacement of co-linear bar members, u0

is the displacement at x = 0, and a simple estimate gives c = 4
√

3s/L. If we
consider that the central bar remains elastic, with axial stiffness AE and strain
du/dx, its tension t(x) is given by

t(x) = AE
du

dx
= −cAEu0e

−cx (5)

and so the central force, f ′x is given from the tension at the x = 0 position

f ′x = −t(0) = cAEu0 (6)

This response can be represented by a spring of stiffness k; combining (3) and
(5)

k =
f ′x
u0

= cAE = 4
√

3s
AE

L
(7)

In fact, this estimate can be improved by considering linear finite element
models with a large range of stockiness, to give a more suitable accurate rela-
tionship, where kempirical = 0.6134k. It was found that using boundary springs
with this stiffness gave essentially identical results to those described in this
paper with a modelled lattice that was either double or half the original model’s
width and height, showing that the boundary was correctly modelled.
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